Enhancing the Merger Simulation Toolkit with ML/AI

Harold Chiang Jack Collison Lorenzo Magnolfi Christopher Sullivan October 26, 2024 — Midwest IO Fest

Motivation

- Section 7 of the Clayton Act prohibits mergers if "[..] the effect of such acquisition[s] may be substantially to lessen competition or to tend to create a monopoly."
- From Horizontal Merger Guidelines:
	- "[FTC & DOJ] seek to identify and challenge competitively harmful mergers while avoiding unnecessary interference with mergers that are either competitively beneficial or neutral."
	- "Most merger analysis is necessarily predictive, requiring an assessment of what will likely happen if a merger proceeds as compared to what will likely happen if it does not."
	- "What sufficient data are available, the Agencies may construct economic models designed to quantify the unilateral price effects resulting from the merger."
- How to provide useful predictions on the effects of mergers?

The Merger Simulation Toolkit

- The standard merger simulation method is well-understood and powerful (e.g., [Nevo, 2018\)](#page-0-0)
- Focuses on unilateral price effects, and relies on the structure of demand and supply
	- Estimate a matrix of own- and cross-price demand elasticities
	- Typically implemented with two supply-side assumptions:
		- 1. Nash-Bertrand pricing conduct
		- 2. Constant marginal cost
	- Can solve for counterfactual post-merger prices
		- holding conduct, demand, and costs fixed or under assumptions, e.g., on efficiencies
- Evidence on the performance of merger simulation retrospectives is mixed (e.g., Bjöornerstedt and Verboven, 2016)
	- A restrictive supply side is among one of the potential problems [\(Peters, 2006\)](#page-0-0)
- Consider a more flexible, semi/nonparametric supply-side model
	- Nonparametric markup function, depends on endogenous prices and quantities
- Estimate model with AI/ML
	- Adapt Variational Method of Moments (VMM) [\(Bennett and Kallus, 2023\)](#page-0-0)
	- Uses deep learning $+$ an objective function with instruments
	- Better performance with high-dimensional data than standard nonparametric IV
	- We develop an inference procedure to quantify uncertainty in prediction
- VMM outperforms standard merger simulation and naive neural network predictions
	- Simulations showcase performance differences
	- Application: mergers in airline markets
	- Portable method, computationally manageable

The Merger Simulation Toolkit

Suppose we only observe pre-merger data across products i and markets t :

- \bullet (s_t, p_t) endog. outcomes, (x_t, w_t) exog. demand and supply shifters, ownership matrix \mathcal{H}_t
- 1. Estimate demand, obtain $s_t =$ 1 $(\rho_t, \hat{\theta}^D, \cdot)$ and matrix $D_t(p_t, \hat{\theta}^D, \cdot)$ s.t. $D_{jkt} = \frac{\partial s_{jt}(p_t, \hat{\theta}^D)}{\partial p_{t\star}}$ ∂p_{kt}
- 2. Under Nash-Bertrand pricing back out $\displaystyle c_t=p_t-\left(\mathcal{H}_t\odot D^{'}_t\right)^{-1}s_t$
- 3. Predict post-merger prices as solution to:

$$
\tilde{p}_t = c_t + \left(\tilde{\mathcal{H}}_t \odot D_t(\tilde{p}_t, \hat{\theta}^D)'\right)^{-1} \mathcal{A}(\tilde{p}_t, \hat{\theta}^D)
$$

where $\tilde{\mathcal{H}}_t$ is post-merger ownership matrix

- Merger simulation is complex prediction problem with simultaneity
	- Prices are an equilibrium object and correlated with demand
	- Naive prediction approaches will fail to recognize this
- The Nash-Bertrand assumption doesn't always work well
- We develop a flexible supply model, relaxing Nash-Bertrand and constant cost assumption
- Throughout, we assume $\delta(\cdot)$ and $D_t = \frac{\partial \delta_t}{\partial \rho_t}$ $\frac{\partial \delta_t}{\partial p_t}$ are known/estimated to focus on supply-side

Flexible Models of Supply

In general, can express

$$
p_t = \Delta(s_t, p_t, x_t; \mathcal{H}_t) + c(s_t, w_t, \omega_t)
$$

as long as the following holds

• Assumption 1: There exists a unique equilibrium, or the equilibrium selection rule is such that the same p_t arises whenever the vector (w_t, x_t, ω_t) is the same.

We also maintain:

- Assumption 2: The cost function is separable in ω_t , or $c(s_t, w_t, \omega_t) = \tilde{c}(s_t, w_t) + \omega_t$.
- Assumption 3: The markup function Δ only depends on s_t and D_t .

so we can write

$$
p_t = h(s_t, D_t, w_t; \mathcal{H}_t) + \omega_t
$$

Remarks

- More general than workhorse model!
	- Assumption 1 amounts to static model describing the data
	- Assumption 2 is almost without loss
	- Assumption 3 satisfied for very broad range of conduct models (e.g., Bertrand, Cournot, Stackelberg, many collusive models, models where firms max profits $+$ consumer surplus)
- Notice that formulation of h does not enforce separability of cost and markup
	- Extension: we can enforce separability with extra regularization steps (not today)
- $\bullet\,$ For merger simulation $\tilde{\mathscr{H}}_t$ (or other counterfactuals), finding prices that solve:

$$
\widetilde{p}_t - \hat{h}(\mathbf{A}(\widetilde{p}_t), D(\widetilde{p}_t), w_t; \widetilde{\mathcal{H}}_t) - \hat{\omega} = 0
$$

where \hat{h} is the VMM model estimate, $s(\cdot)$ is demand, and $\hat{\omega}_t$ are estimated residuals

Identification

- We rely on a moment condition with instruments z for identification
	- Instruments are of the right dimension, assume completeness
	- Exogeneity moment condition $\mathbb{E}[\omega_{it} | z_{it}, w_{it}] = 0$
- Identification follows arguments akin to [Berry and Haile \(2014\)](#page-0-0)
- Candidate instruments:
	- own and rival prod. characteristics, rival's cost shifters, taxes, etc.
- Must include demand shifters excluded from cost
	- If not, w/ logit demand, may just recover inverse demand $h = s^{-1}$
- But, standard nonparametric techniques are unlikely to perform well in finite samples

Estimation

- Classic nonparametric estimators are well studied for GMM type setups
	- see reviews by [Carrasco et al. \(2007\)](#page-0-0): [Chen \(2007\)](#page-0-0)
- But, curse of dimensionality and instability in classical nonparametric estimation
	- documented in e.g., [Bennett et al. \(2019\)](#page-0-0); [Bennett and Kallus \(2020\)](#page-0-0)
- Can use neural networks to fit high-dimensional nonlinear functions with squared loss:

$$
\hat{\theta}_N = \operatorname{argmin}_{\theta \in \Theta} \frac{1}{\mathcal{T}J} \sum_{j,t} (p_{jt} - h_j(s_t, D_t, w_t; \theta, \mathcal{H}_t))^2
$$

- However, standard neural networks ignore endogeneity
	- Cannot correctly recover the markup and cost function $h(\cdot)!$

Variational Method of Moments (VMM)

• Inherently, we have a moment condition for the structural markup:

$$
\mathbb{E}[p_{jt} - h_j(s_t, D_t, w_t; \theta, \mathcal{H}_t) | z_t, w_t] = 0
$$

 $\bullet\,$ Given preliminary estimate $\widetilde{\theta}_N$, reformulate [Bennett and Kallus \(2023\)](#page-0-0) to:

$$
\hat{\theta}_N = \operatorname{argmin}_{\theta \in \Theta} \operatorname{sup}_{f \in \mathcal{F}_N} \frac{1}{\mathcal{T}J} \sum_{j,t} f(z_{jt})^T \omega_{jt}(\theta) - \frac{1}{4\mathcal{T}J} \sum_{j,t} (f(z_{jt})^T \omega_{jt}(\tilde{\theta}_N))^2 - R_N(f)
$$

s.t. $\omega_{jt}(\theta) = p_{jt} - h_j(s_t, D_t, w_t; \theta, \mathcal{H}_t)$

- Both f and h are neural networks, allowing flexible controls of model complexity to cope with the curse of dimensionality
- $R_N(\cdot)$ is a penalty term that regularize the complexity of f
- We can use the estimate of the structural object h for merger simulation

Inference

• If $\tilde{\theta}_N \stackrel{p}{\to} \theta_0$, under regularity conditions, Theorems 2-3 in [Bennett and Kallus \(2023\)](#page-0-0) imply:

$$
\sqrt{N}(\hat{\theta}_N-\theta_0)\stackrel{d}{\rightarrow}N(0,\Omega_0^{-1})
$$

where

$$
\Omega_0 = \mathbb{E}\left[\mathbb{E}[\nabla_{\theta}\omega(\theta_0) | z, w]^T \mathbb{E}[\omega(\theta)\omega(\theta)^T | z, w]^{-1} \mathbb{E}[\nabla_{\theta}\omega(\theta_0) | z, w]\right],
$$

 $\bullet\,$ For inference on d post-merger predicted prices $h(\hat\theta_N,\tilde{\mathcal{H}})$, delta method yields:

$$
\sqrt{N}(h(\hat{\theta}_N, \tilde{\mathcal{H}}) - h(\theta_0, \tilde{\mathcal{H}})) \stackrel{d}{\rightarrow} N(0, \nabla_{\theta'} h(\theta_0, \tilde{\mathcal{H}}) \Omega_0^{-1} \nabla_{\theta'} h(\theta_0, \tilde{\mathcal{H}})^T)
$$

[Inference Details](#page-33-0)

- Simple parametric simulations to evaluate performance relative to the baseline
	- Two or three single-product firms in T markets
	- Demand: Logit with two independent product characteristics
	- Supply: Linear costs with two independent cost shifters
- We simulate data under two different assumptions on conduct
	- Bertrand: Identity ownership matrix
	- Profit Weight: Off-diagonal weights of 0.75
- We need a way to compare different (potentially misspecified) models
- We compare implied unobserved cost shocks ω^m under different models m
	- True, Bertrand, monopoly, perfect competition, and flexible models (VMM and naive NN)
	- Cost shocks from the true model are irreducible error (noise)
- We take the mean squared error (MSE) between model implied and true shocks
- Benchmark: how far from the irreducible error is the prediction error

Comparison of Models

- $\bullet\,$ We recover $\omega^{\mathcal{B}},\omega^{\mathcal{M}},$ and $\omega^{\mathcal{P}}$ under Bertrand, Monopoly, and perfect competition
- *VMM Model:* For flexible supply-side model, we estimate h and recover $\hat{\omega}_{it}$:

$$
p_{jt} = h_j(s_t, D_t, w_{jt}; \mathcal{H}_t) + \hat{\omega}_{jt}
$$

- VMM instruments: own x, sum of rival x
- \bullet *Naive Model:* Ignores endogeneity; we estimate a with NN a flexible h^N and recover $\hat{\omega}^N$:

$$
p_{jt} = h_j^N(s_t, D_t, w_{jt}; \mathcal{H}_t) + \hat{\omega}_{jt}^N
$$

- We compute test sample MSE for different specifications of flexible models:
	- vary neural network architectures, sample sizes, and inclusion of demand derivatives

Table 1: Test sample MSE across models (Bertrand DGP, Small Network)

Table 2: Test sample MSE across models (Profit Weight, Large Network)

- In all simulations, VMM outperforms all but the true model
	- Including the derivative matrix greatly improves performance
- Larger neural networks improve learning in some cases
	- Performance is improved with sample size, especially for the profit weight model
- The naive estimator underperforms VMM

What about predictive performance in out-of-sample 3-to-2 merger simulation?

Figure 1: Prediction Error for Bertrand DGP Merger Simulation

Merger Simulation for Profit Weight DGP ($\kappa = 0.75$)

- Key question: How do we interpret the flexible \hat{h} we recover?
- A useful object for comparison is the pass-through matrix implied by \hat{h}
- To compute pass-through:
	- Pick median post-merger market by inside share from simulations
	- Increase costs c by 10%, loading increases on the residual $\hat{\omega}$
	- Solve for equilibrium prices under different models of conduct
	- Compare price pre and post cost change, report price change/cost change

Table 3: Bertrand DGP Pass-through Comparison $c_1 = 15.85$, $c_2 = 12.54$, $s_1 = 0.54$, $s_2 = 0.15$

• The flexible model learns markup and cost functions that imply correct pass-throughs

Table 4: Profit Weight DGP Pass-through Comparison $c_1 = 13.75$, $c_2 = 12.96$, $s_1 = 0.61$, $s_2 = 0.04$

• The flexible model learns markup and cost functions that imply correct pass-throughs

Table 5: Inference Comparison by Sample Size (Small Network)

• Intuitively: when predicting price at a particular market structure, uncertainty is (i) quantifiable, (ii) reasonable already at a low sample size of $T = 100$, and (iii) decreasing with sample size

- Good environment to test our method: airline markets in the US have rich data from DB1B
	- Fares, passenger counts, distances, carrier identifiers, etc.
	- Origin and destinations of trips
	- Several large mergers in sample
- Goal: predict unilateral price effects of American-US Airways merger
	- Zoom in on markets that move from $3 \rightarrow 2$ firms post-merger
	- Treated markets are markets in which both merging firms are present
- (We abstract from many interesting aspects of the industry here...)

Figure 3: HHI in the Airline Industry

Observed Price Changes after AA-US Merger

Figure 4: Price Change Distribution

• Price changes after the AA-US merger in $3 \rightarrow 2$ markets 26

Demand

Table 6: Demand Estimates

• Elasticities broadly in line with literature (e.g., [Berry and Jia, 2010\)](#page-0-0) ²⁷

Fit: Pooled In-Sample and Out-of-Sample Results

Figure 5: Model Comparison

• Reduction of \sim 40% in passenger-weighted MSE relative to Bertrand with constant costs₂₈

Figure 6: Predicted Price Change Distribution

• In theory, VMM can predict price decreases but it doesn't here ²⁹

Merger Simulation: Comparing Predicted and Observed Post-merger Prices

Merger Simulation: Inference

Figure 8: Width of Confidence Intervals

Thank You!

Inference: Simplest Case $(d = 1)$

- $\bullet\,$ Note that $\nabla_{\theta'}h(\theta_0)$ is $d\times b;$ in the simplest case, suppose that $d=1$
- $\bullet\,$ Lemma 9 in [Bennett and Kallus \(2023\)](#page-0-0) states that for any $\beta\in\mathbb{R}^b$, we have:

$$
\beta^{\mathsf{T}} \Omega_0^{-1} \beta = -\frac{1}{4} \inf_{\gamma \in \mathbb{R}^b} \sup_{f \in \mathcal{F}} \left\{ \mathbb{E}[f(Z)^{\mathsf{T}} \nabla_{\theta} \omega(X; \theta_0) \gamma] - \frac{1}{4} \mathbb{E}[(f(Z)^{\mathsf{T}} \omega(X; \theta_0))^2] - 4 \gamma^{\mathsf{T}} \beta - R_N(f) \right\} \tag{1}
$$

• Take $\beta = \nabla_{\theta} h_{x}(\theta_0)$ and the above solution to the optimization problem becomes:

$$
\sigma_x^2 = \nabla_{\theta} h_x(\theta_0) \Omega_0^{-1} \nabla_{\theta} h_x(\theta_0)^T
$$

- \bullet This is the asymptotic variance for $\sqrt{N}(h_{\sf x}(\hat{\theta}_N)-h_{\sf x}(\theta_0))$
	- $\nabla_{\theta} h_{x}(\theta_0)$ can be difficult to compute analytically
	- Numerical differentiation can be employed (e.g., [Hong et al. \(2015\)](#page-0-0))
	- $\bullet\,$ Expectations can be replaced by sample means, $\hat\theta_N$ can be used in place of θ_0
	- \bullet These together yield a feasible version of Equation [\(1\)](#page-33-1) which provides an estimator $\hat{\sigma}_\mathsf{x}^2$ for σ_x^2

Inference: Extending to $d > 2$

- The approach above cannot obtain a covariance matrix when $d \geq 2$
- $\bullet\,$ Holm's Step-Down procedure using the estimates for $\hat{\sigma}_{\mathsf{x}_{j}}^2$ and $h(\hat{\theta})$ for each $j=1,...,d$
- \bullet The set of critical values T_{α} is known for significance levels $\frac{\alpha}{d+1-k}$ and $k=1,...,d$
	- We can use a folded normal distribution with $t = 1$ to account for bias
- For any ordering of x and fixed ordering T_{α} , we can compute the confidence interval:

$$
h_{x}(\hat{\theta})\pm N^{-\frac{1}{2}}\hat{\sigma}_{x}T_{\alpha}
$$

- We compute this for all permutations of $j = 1, ..., d$, resulting in d! permutations of x
- This is because we must consider any possible ordering of the p-values of $x_1, ..., x_d$

1. Estimate $\hat{\sigma}_{\textsf{x}_j}^2$ for $\sigma_{\textsf{x}_j}^2$ for $j\in\{1,...,d\}\equiv J$ by solving the feasible version of Equation (1)

- 2. Fix values $T_{\alpha} = \{T_{\alpha_k} : k = 1, ..., d\}$ where $\alpha_k = \frac{\alpha}{d+1-k}$
- 3. For each permutation \tilde{J} of J:
	- 3.1 Arrange values \tilde{x} and $\hat{\sigma}_{\tilde{\mathsf{x}}}$ with permuted indices \tilde{J}
	- 3.2 Construct bounds as $h_{\tilde\chi}(\hat\theta)\pm n^{-\frac{1}{2}}\hat\sigma_{\tilde\chi}\, \mathcal{T}_\alpha$ with fixed $\, \mathcal{T}_\alpha \,$
- 4. Simultaneous confidence interval as the union of $2 \times d \times d!$ linear constraints from Step (3)

Table 7: Test sample MSE across models (Bertrand DGP, Large Network)

Table 8: Test sample MSE across models (Profit Weight DGP, Small Network)

