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® Section 7 of the Clayton Act prohibits mergers if “[..] the effect of such acquisition[s| may
be substantially to lessen competition or to tend to create a monopoly.”

® From Horizontal Merger Guidelines:
e “[FTC & DOJ]| seek to identify and challenge competitively harmful mergers while avoiding
unnecessary interference with mergers that are either competitively beneficial or neutral.”

® “Most merger analysis is necessarily predictive, requiring an assessment of what will likely
happen if a merger proceeds as compared to what will likely happen if it does not.”

® “What sufficient data are available, the Agencies may construct economic models designed to
quantify the unilateral price effects resulting from the merger."

® How to provide useful predictions on the effects of mergers?



The Merger Simulation Toolkit

® The standard merger simulation method is well-understood and powerful (e.g., Nevo, 2018)

® Focuses on unilateral price effects, and relies on the structure of demand and supply
® [Estimate a matrix of own- and cross-price demand elasticities
® Typically implemented with two supply-side assumptions:
1. Nash-Bertrand pricing conduct
2. Constant marginal cost
® Can solve for counterfactual post-merger prices

® holding conduct, demand, and costs fixed or under assumptions, e.g., on efficiencies

® Evidence on the performance of merger simulation retrospectives is mixed (e.g.,
Bjoornerstedt and Verboven, 2016)

® A restrictive supply side is among one of the potential problems (Peters, 2006)



What We Do

e Consider a more flexible, semi/nonparametric supply-side model

® Nonparametric markup function, depends on endogenous prices and quantities

® Estimate model with Al/ML
® Adapt Variational Method of Moments (VMM) (Bennett and Kallus, 2023)
® Uses deep learning + an objective function with instruments
® Better performance with high-dimensional data than standard nonparametric IV
® \We develop an inference procedure to quantify uncertainty in prediction

® VMM outperforms standard merger simulation and naive neural network predictions
® Simulations showcase performance differences
® Application: mergers in airline markets
® Portable method, computationally manageable



The Merger Simulation Toolkit

Suppose we only observe pre-merger data across products j and markets t:

® (s¢, pt) endog. outcomes, (x¢, wy) exog. demand and supply shifters, ownership matrix #;

8"’jt(pt7éD)

1. Estimate demand, obtain s; = o(pt,éD, -) and matrix Dt(pt,éD, ) s.t. Djy = Op

N
2. Under Nash-Bertrand pricing back out ¢; = p; — (%t ® Dt> St

3. Predict post-merger prices as solution to:
; . P B
pr = Ct + (c%t © Di(pt,07) > 3(pr, 07)

where #, is post-merger ownership matrix



A Flexible Model of Supply

® Merger simulation is complex prediction problem with simultaneity

® Prices are an equilibrium object and correlated with demand
® Naive prediction approaches will fail to recognize this

The Nash-Bertrand assumption doesn’t always work well

We develop a flexible supply model, relaxing Nash-Bertrand and constant cost assumption

Throughout, we assume 4(-) and D; = g‘—;ft are known /estimated to focus on supply-side



Flexible Models of Supply

In general, can express
pr = A(St, pt, xt; Ht) + c(St, we, we)

as long as the following holds

® Assumption 1: There exists a unique equilibrium, or the equilibrium selection rule is such

that the same p; arises whenever the vector (wg, x¢, w;) is the same.
We also maintain:
® Assumption 2: The cost function is separable in w¢, or c(st, we,wt) = E(s¢, we) + we.
® Assumption 3: The markup function A only depends on s; and D;.

SO we can write
p: = h(s¢, D, we; Hy) 4 wy



® More general than workhorse model!

® Assumption 1 amounts to static model describing the data

® Assumption 2 is almost without loss

® Assumption 3 satisfied for very broad range of conduct models (e.g., Bertrand, Cournot,
Stackelberg, many collusive models, models where firms max profits + consumer surplus)

® Notice that formulation of h does not enforce separability of cost and markup

® Extension: we can enforce separability with extra regularization steps (not today)
e For merger simulation #; (or other counterfactuals), finding prices that solve:
Pr — h(s(Bt), D(pt), we; He) — =0

where h is the VMM model estimate, 4(-) is demand, and &; are estimated residuals



Identification

® \We rely on a moment condition with instruments z for identification

® Instruments are of the right dimension, assume completeness
® Exogeneity moment condition Elw;¢ | zj, wjr] = 0

Identification follows arguments akin to Berry and Haile (2014)

Candidate instruments:

® own and rival prod. characteristics, rival’s cost shifters, taxes, etc.

Must include demand shifters excluded from cost

® |f not, w/ logit demand, may just recover inverse demand h = s~}

® But, standard nonparametric techniques are unlikely to perform well in finite samples



® (Classic nonparametric estimators are well studied for GMM type setups
® see reviews by Carrasco et al. (2007); Chen (2007)

e But, curse of dimensionality and instability in classical nonparametric estimation
® documented in e.g., Bennett et al. (2019); Bennett and Kallus (2020)

e Can use neural networks to fit high-dimensional nonlinear functions with squared loss:
~ . 1 2
9/\/ = argmmeeeﬁ Z (p_]t — hj(st, Dt, Wt, 9, %t))
j?t
® However, standard neural networks ignore endogeneity

® Cannot correctly recover the markup and cost function h(-)!



Variational Method of Moments (VMM)

® |nherently, we have a moment condition for the structural markup:

E[pjt — hj(st, Df_—, Wt; 9, %t) ‘ Zt, Wt] =0

® Given preliminary estimate fy, reformulate Bennett and Kallus (2023) to:
A . 1 1 ~
On = argmityeoSUPfesy 1 Z f(zjt)Tth(e) T a7 Z:(’r(zjt)Tth(eN))2 — Rn(f)
Jit Jit

s.t. UJJt(e) = Pjt — hj(5t7 va Wi, 97 gff)

Both f and h are neural networks, allowing flexible controls of model complexity to cope

with the curse of dimensionality
® Rp(-) is a penalty term that regularize the complexity of f

® We can use the estimate of the structural object h for merger simulation
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Inference

e If Gy 5 65, under regularity conditions, Theorems 2-3 in Bennett and Kallus (2023) imply:
VN(Oy — 00) % N(0, 25
where
Qo =E |E[Vew(ho) | z, w] "E[w(®)w() | z, w] *E[Vew(ho) | z, w]| ,
® For inference on d post-merger predicted prices h(OAN,ff), delta method yields:
VN(h(On, 78) — h(Bo, 7)) = N(O, Vo h(80, 7)Y g h(Bo, 7))
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Simulations Setup

® Simple parametric simulations to evaluate performance relative to the baseline
® Two or three single-product firms in T markets
® Demand: Logit with two independent product characteristics

® Supply: Linear costs with two independent cost shifters
® \We simulate data under two different assumptions on conduct

® PBertrand: ldentity ownership matrix

® Profit Weight: Off-diagonal weights of 0.75
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Evaluating Predictive Performance

We need a way to compare different (potentially misspecified) models

® \We compare implied unobserved cost shocks w™ under different models m

® True, Bertrand, monopoly, perfect competition, and flexible models (VMM and naive NN)

® Cost shocks from the true model are irreducible error (noise)

We take the mean squared error (MSE) between model implied and true shocks

Benchmark: how far from the irreducible error is the prediction error
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Comparison of Models

® We recover wB wM, and w” under Bertrand, Monopoly, and perfect competition

® VMM Model: For flexible supply-side model, we estimate h and recover @j;:
pjt = hj (s¢, De, wie; He) + Oj

® VMM instruments: own x, sum of rival x
e Naive Model: Ignores endogeneity; we estimate a with NN a flexible AV and recover &N:
N . ~N
Pjt = hj (¢, Dy, Wit; ) + Wit

® \We compute test sample MSE for different specifications of flexible models:

® vary neural network architectures, sample sizes, and inclusion of demand derivatives
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Bertrand DGP Results @ Eanesk

Table 1: Test sample MSE across models (Bertrand DGP, Small Network)

No. Markets Derivatives w wB wM w?f w oN

T =100 No 0.005 0.005 583.409 6.518 0.892 1.693
T =100 Yes - - - - 0.556 1.319
T =1,000 No 0.001 0.001 979.962 5977 1.390 1.800
T =1,000 Yes - - - - 0.348 0.978
T = 10,000 No 0.000 0.000 1693.914 6.317 1.221 1.743

T = 10,000 Yes - - - - 0.170 1.047
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Profit Weight DGP (x = 0.75) Results @ik

Table 2: Test sample MSE across models (Profit Weight, Large Network)

No. Markets Derivatives w wB wM wP w oN

T =100 No 0.005 8.765 5.077 11.474 1.359 1.847
T =100 Yes - - - - 2.381 2.233
T =1,000 No 0.001 7.0568 6.264 7.802 1.213 0.812
T =1,000 Yes - - - - 0.814 0.820
T = 10,000 No 0.000 7.965 6.289 8.690 0.324 0.887

T = 10,000 Yes - - - - 0.301 0.892
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Key Takeaways

® |n all simulations, VMM outperforms all but the true model

® |ncluding the derivative matrix greatly improves performance

® |arger neural networks improve learning in some cases

® Performance is improved with sample size, especially for the profit weight model

® The naive estimator underperforms VMM

What about predictive performance in out-of-sample 3-to-2 merger simulation?
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Merger Simulation for Bertrand DGP

Figure 1: Prediction Error for Bertrand DGP Merger Simulation
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Merger Simulation for Profit Weight DGP (x =

Figure 2: Prediction Error for Profit Weight Merger Simulation
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Peeking Inside the Black Box: Interpretation via Pass-through

e Key question: How do we interpret the flexible h we recover?

e A useful object for comparison is the pass-through matrix implied by h

® To compute pass-through:
® Pick median post-merger market by inside share from simulations
® |ncrease costs ¢ by 10%, loading increases on the residual &
® Solve for equilibrium prices under different models of conduct
® Compare price pre and post cost change, report price change/cost change
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Bertrand DGP Pass-through

Table 3: Bertrand DGP Pass-through Comparison
c1 = 15.85, cp = 12.54, s; =0.54, s, = 0.15

(a) True Model (Bertrand) (b) VMM
0.49 0.05 0.49 0.10
0.14 0.88 0.10 0.66

® The flexible model learns markup and cost functions that imply correct pass-throughs
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Profit Weight DGP (x = 0.75) Pass-through

Table 4: Profit Weight DGP Pass-through Comparison
¢ = 13.75, ¢ = 12.96, s; = 0.61, s, = 0.04

(a) True Model (x = 0.75) (b) VMM
0.39 -0.44 0.40 -0.31
-0.00 0.97 -0.00 0.88

® The flexible model learns markup and cost functions that imply correct pass-throughs
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Inference

Table 5: Inference Comparison by Sample Size (Small Network)

Model Sample Size P P Avg. /N Min. 6/v/N Max. 6/vVN Interval

Bertrand N = 253 21.014  21.092 0.817 0.059 1.415 [18.673, 23.512]
Bertrand N = 2,579 20.341 20.474 0.057 0.042 0.071 [20.305, 20.642]
Profit Weight N = 253 17.321  12.907 0.309 0.174 0.648 [11.991, 13.822]
Profit Weight N = 2,579 17.375 15.554 0.099 0.069 0.158 [15.261, 15.847]

® Intuitively: when predicting price at a particular market structure, uncertainty is (i) quantifiable, (ii) reasonable
already at a low sample size of T = 100, and (iii) decreasing with sample size
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Application to Airline Mergers

® Good environment to test our method: airline markets in the US have rich data from DB1B

® Fares, passenger counts, distances, carrier identifiers, etc.
® Origin and destinations of trips
® Several large mergers in sample

® Goal: predict unilateral price effects of American-US Airways merger

® Zoom in on markets that move from 3 — 2 firms post-merger
® Treated markets are markets in which both merging firms are present

® (We abstract from many interesting aspects of the industry here...)
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Airline Concentration
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Observed Price Changes after AA-US Merger

Figure 4: Price Change Distribution

8 2
o
7 ~
o)
6 =)

Frequency
w B w

N

=

-30 =20 -10 O 10 20 30 40 50
Post-Merger Price Changes (%)

® Price changes after the AA-US merger in 3 — 2 markets 26



Demand

Table 6: Demand Estimates

log(sjt) - log(sot)

Average Fare -0.0048™**
(0.0004)
log(St) 0.8356™**
(0.0133)
Share Nonstop 0.4030***
(0.0282)
Average Distance (1,000's) -0.4881***
(0.0498)
Average Distance? (1,000's) 0.0485™**
(0.0045)
log(1 + Num. Fringe) -0.2642***
(0.0057)
R? 0.94238
Observations 1,283,472
Own-price elasticity -5.1652
Origin-destination fixed effects v

® Elasticities broadly in line with literature (e.g., Berry and Jia, 2010) 27



Fit: Pooled In-Sample and Out-of-Sample Results

Figure 5: Model Comparison
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® Reduction of ~ 40% in passenger-weighted MSE relative to Bertrand with constant costs,o



Merger Simulation: Predicted Price Changes

Figure 6: Predicted Price Change Distribution
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® |n theory, VMM can predict price decreases but it doesn't here 29



Merger Simulation: Comparing Predicted and Observed Post-merger Prices

Figure 7: Merger Simulation Comparison
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Merger Simulation: Inference

Figure 8: Width of Confidence Intervals
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Thank You!
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Inference: Simplest Case (d = 1)

® Note that Vg h(p) is d x b; in the simplest case, suppose that d =1

® Lemma 9 in Bennett and Kallus (2023) states that for any 3 € R?, we have:
57516 = — 3 inf sup {E[f(Z)TVew(X;Go)V] ~ TE[(F(2)Tw(X: 80)°] — 497 - R/v(f)} (1)
4 yeRb fey 4
® Take 8 = Vyh«(6p) and the above solution to the optimization problem becomes:

02 = Vohy(00)Q ' Vahe(60) "

e This is the asymptotic variance for v/N(hy(On) — hx(60))
® Vohy(6p) can be difficult to compute analytically
® Numerical differentiation can be employed (e.g., Hong et al. (2015))
® Expectations can be replaced by sample means, Oy can be used in place of 6y
® These together yield a feasible version of Equation (1) which provides an estimator &2 for o2



Inference: Extending to d > 2

® The approach above cannot obtain a covariance matrix when d > 2

Holm’s Step-Down procedure using the estimates for 6)29, and h(é) foreach j=1,....d

The set of critical values T, is known for significance levels ﬁ and k=1,....d
® We can use a folded normal distribution with t = 1 to account for bias

For any ordering of x and fixed ordering T,, we can compute the confidence interval:
he(0) £ N"26, T,

® \We compute this for all permutations of j = 1,..., d, resulting in d! permutations of x

This is because we must consider any possible ordering of the p-values of xi, ..., x4



Inference Algorithm

1. Estimate 6)29, for 0)29, for j € {1,...,d} = J by solving the feasible version of Equation (1)
2. Fixvalues T, ={T,, : k=1,...,d} where a) = ﬁ

3. For each permutation J of J:

3.1 Arrange values X and 63 with permuted indices J
3.2 Construct bounds as hx(é) +n~26; T, with fixed T,

4. Simultaneous confidence interval as the union of 2 x d x d! linear constraints from Step (3)



Bertrand DGP Results @&k

Table 7: Test sample MSE across models (Bertrand DGP, Large Network)

No. Markets Derivatives w wB wM w?f w oN

T =100 No 0.005 0.005 583.409 6.518 2.127 0.848
T =100 Yes - - - - 1.234 1.259
T =1,000 No 0.001 0.001 979.962 5977 0.645 0.802
T =1,000 Yes - - - - 0.690 0.791
T = 10,000 No 0.000 0.000 1693.914 6.317 0.352 0.875

T = 10,000 Yes - - - - 0.506 0.875




Profit Weight DGP (x = 0.75) Results @&

Table 8: Test sample MSE across models (Profit Weight DGP, Small Network)

No. Markets Derivatives w wB wM wP w oN

T =100 No 0.005 8.765 b5.077 11.474 2330 2.934
T =100 Yes - - - - 2.749 2512
T =1,000 No 0.001 7.058 6.264 7.802 2.385 2.314
T =1,000 Yes - - - - 1.176 1.747
T = 10,000 No 0.000 7.965 6.289 8.690 1.855 2.563

T = 10,000 Yes - - - - 1.112  0.892
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