Enhancing the Merger Simulation Toolkit with ML/AI

Harold Chiang Jack Collison Lorenzo Magnolfi Christopher Sullivan October 26, 2024 — Midwest IO Fest

Motivation

- Section 7 of the Clayton Act prohibits mergers if "[..] the effect of such acquisition[s] may be substantially to lessen competition or to tend to create a monopoly."
- From Horizontal Merger Guidelines:
 - "[FTC & DOJ] seek to identify and challenge competitively harmful mergers while avoiding unnecessary interference with mergers that are either competitively beneficial or neutral."
 - "Most merger analysis is necessarily predictive, requiring an assessment of what will likely happen if a merger proceeds as compared to what will likely happen if it does not."
 - "What sufficient data are available, the Agencies may construct economic models designed to quantify the unilateral price effects resulting from the merger."
- How to provide useful predictions on the effects of mergers?

The Merger Simulation Toolkit

- The standard merger simulation method is well-understood and powerful (e.g., Nevo, 2018)
- Focuses on unilateral price effects, and relies on the structure of demand and supply
 - Estimate a matrix of own- and cross-price demand elasticities
 - Typically implemented with two supply-side assumptions:
 - 1. Nash-Bertrand pricing conduct
 - 2. Constant marginal cost
 - Can solve for counterfactual post-merger prices
 - holding conduct, demand, and costs fixed or under assumptions, e.g., on efficiencies
- Evidence on the performance of merger simulation retrospectives is mixed (e.g., Bjöornerstedt and Verboven, 2016)
 - A restrictive supply side is among one of the potential problems (Peters, 2006)

- Consider a more flexible, semi/nonparametric supply-side model
 - Nonparametric markup function, depends on endogenous prices and quantities
- Estimate model with AI/ML
 - Adapt Variational Method of Moments (VMM) (Bennett and Kallus, 2023)
 - Uses deep learning + an objective function with instruments
 - Better performance with high-dimensional data than standard nonparametric IV
 - We develop an inference procedure to quantify uncertainty in prediction
- VMM outperforms standard merger simulation and naive neural network predictions
 - Simulations showcase performance differences
 - Application: mergers in airline markets
 - Portable method, computationally manageable

The Merger Simulation Toolkit

Suppose we only observe pre-merger data across products j and markets t:

- (s_t, p_t) endog. outcomes, (x_t, w_t) exog. demand and supply shifters, ownership matrix \mathcal{H}_t
- 1. Estimate demand, obtain $s_t = s(p_t, \hat{\theta}^D, \cdot)$ and matrix $D_t(p_t, \hat{\theta}^D, \cdot)$ s.t. $D_{jkt} = \frac{\partial s_{jt}(p_t, \hat{\theta}^D)}{\partial p_{kt}}$
- 2. Under Nash-Bertrand pricing back out $c_t = p_t \left(\mathcal{H}_t \odot D_t'\right)^{-1} s_t$
- 3. Predict post-merger prices as solution to:

$$\tilde{p}_t = c_t + \left(\tilde{\mathcal{H}}_t \odot D_t(\tilde{p}_t, \hat{\theta}^D)'\right)^{-1} s(\tilde{p}_t, \hat{\theta}^D)$$

where $\tilde{\mathcal{H}}_t$ is post-merger ownership matrix

- Merger simulation is complex prediction problem with simultaneity
 - Prices are an equilibrium object and correlated with demand
 - Naive prediction approaches will fail to recognize this
- The Nash-Bertrand assumption doesn't always work well
- We develop a flexible supply model, relaxing Nash-Bertrand and constant cost assumption
- Throughout, we assume $\delta(\cdot)$ and $D_t = \frac{\partial \delta_t}{\partial p_t}$ are known/estimated to focus on supply-side

Flexible Models of Supply

In general, can express

$$p_t = \Delta(s_t, p_t, x_t; \mathcal{H}_t) + c(s_t, w_t, \omega_t)$$

as long as the following holds

 Assumption 1: There exists a unique equilibrium, or the equilibrium selection rule is such that the same p_t arises whenever the vector (w_t, x_t, ω_t) is the same.

We also maintain:

- Assumption 2: The cost function is separable in ω_t , or $c(s_t, w_t, \omega_t) = \tilde{c}(s_t, w_t) + \omega_t$.
- Assumption 3: The markup function Δ only depends on s_t and D_t .

so we can write

$$p_t = h(s_t, D_t, w_t; \mathcal{H}_t) + \omega_t$$

Remarks

- More general than workhorse model!
 - Assumption 1 amounts to static model describing the data
 - Assumption 2 is almost without loss
 - Assumption 3 satisfied for very broad range of conduct models (e.g., Bertrand, Cournot, Stackelberg, many collusive models, models where firms max profits + consumer surplus)
- Notice that formulation of h does not enforce separability of cost and markup
 - Extension: we can enforce separability with extra regularization steps (not today)
- For merger simulation $\tilde{\mathcal{H}}_t$ (or other counterfactuals), finding prices that solve:

$$ilde{p}_t - \hat{h}(s(ilde{p}_t), D(ilde{p}_t), w_t; ilde{\mathcal{H}}_t) - \hat{\omega} = 0$$

where \hat{h} is the VMM model estimate, $\delta(\cdot)$ is demand, and $\hat{\omega}_t$ are estimated residuals

Identification

- We rely on a moment condition with instruments z for identification
 - Instruments are of the right dimension, assume completeness
 - Exogeneity moment condition $\mathbb{E}[\omega_{jt} \mid z_{jt}, w_{jt}] = 0$
- Identification follows arguments akin to Berry and Haile (2014)
- Candidate instruments:
 - own and rival prod. characteristics, rival's cost shifters, taxes, etc.
- Must include demand shifters excluded from cost
 - If not, w/ logit demand, may just recover inverse demand $h = s^{-1}$
- But, standard nonparametric techniques are unlikely to perform well in finite samples

Estimation

- Classic nonparametric estimators are well studied for GMM type setups
 - see reviews by Carrasco et al. (2007); Chen (2007)
- But, curse of dimensionality and instability in classical nonparametric estimation
 - documented in e.g., Bennett et al. (2019); Bennett and Kallus (2020)
- Can use neural networks to fit high-dimensional nonlinear functions with squared loss:

$$\hat{\theta}_{N} = \operatorname{argmin}_{\theta \in \Theta} \frac{1}{TJ} \sum_{j,t} (p_{jt} - h_j(s_t, D_t, w_t; \theta, \mathcal{H}_t))^2$$

- However, standard neural networks ignore endogeneity
 - Cannot correctly recover the markup and cost function $h(\cdot)!$

Variational Method of Moments (VMM)

• Inherently, we have a moment condition for the structural markup:

$$\mathbb{E}[p_{jt} - h_j(s_t, D_t, w_t; \theta, \mathcal{H}_t) \mid z_t, w_t] = 0$$

• Given preliminary estimate $\tilde{\theta}_N$, reformulate Bennett and Kallus (2023) to:

$$\hat{\theta}_{N} = \operatorname{argmin}_{\theta \in \Theta} \sup_{f \in \mathcal{F}_{N}} \frac{1}{TJ} \sum_{j,t} f(z_{jt})^{T} \omega_{jt}(\theta) - \frac{1}{4TJ} \sum_{j,t} (f(z_{jt})^{T} \omega_{jt}(\tilde{\theta}_{N}))^{2} - R_{N}(f)$$

s.t. $\omega_{jt}(\theta) = p_{jt} - h_{j}(s_{t}, D_{t}, w_{t}; \theta, \mathcal{H}_{t})$

- Both f and h are neural networks, allowing flexible controls of model complexity to cope with the curse of dimensionality
- $R_N(\cdot)$ is a penalty term that regularize the complexity of f
- We can use the estimate of the structural object h for merger simulation

Inference

• If $\tilde{\theta}_N \xrightarrow{p} \theta_0$, under regularity conditions, Theorems 2-3 in Bennett and Kallus (2023) imply:

$$\sqrt{N}(\hat{ heta}_N - heta_0) \stackrel{d}{
ightarrow} N(0, \Omega_0^{-1})$$

where

$$\Omega_0 = \mathbb{E}\left[\mathbb{E}[\nabla_{\theta}\omega(\theta_0) \mid z, w]^{\mathsf{T}}\mathbb{E}[\omega(\theta)\omega(\theta)^{\mathsf{T}} \mid z, w]^{-1}\mathbb{E}[\nabla_{\theta}\omega(\theta_0) \mid z, w]\right],$$

• For inference on *d* post-merger predicted prices $h(\hat{\theta}_N, \tilde{\mathcal{H}})$, delta method yields:

$$\sqrt{N}(h(\hat{\theta}_N, \tilde{\mathcal{H}}) - h(\theta_0, \tilde{\mathcal{H}})) \stackrel{d}{\to} N(0, \nabla_{\theta'} h(\theta_0, \tilde{\mathcal{H}}) \Omega_0^{-1} \nabla_{\theta'} h(\theta_0, \tilde{\mathcal{H}})^{\mathsf{T}})$$

Inference Details

- Simple parametric simulations to evaluate performance relative to the baseline
 - Two or three single-product firms in \mathcal{T} markets
 - Demand: Logit with two independent product characteristics
 - Supply: Linear costs with two independent cost shifters
- We simulate data under two different assumptions on conduct
 - Bertrand: Identity ownership matrix
 - Profit Weight: Off-diagonal weights of 0.75

- We need a way to compare different (potentially misspecified) models
- We compare implied unobserved cost shocks ω^m under different models m
 - True, Bertrand, monopoly, perfect competition, and flexible models (VMM and naive NN)
 - Cost shocks from the true model are irreducible error (noise)
- We take the mean squared error (MSE) between model implied and true shocks
- Benchmark: how far from the irreducible error is the prediction error

Comparison of Models

- We recover ω^B, ω^M , and ω^P under Bertrand, Monopoly, and perfect competition
- VMM Model: For flexible supply-side model, we estimate h and recover $\hat{\omega}_{jt}$:

$$p_{jt} = h_j \left(s_t, D_t, w_{jt}; \mathcal{H}_t \right) + \hat{\omega}_{jt}$$

- VMM instruments: own x, sum of rival x
- Naive Model: Ignores endogeneity; we estimate a with NN a flexible h^N and recover $\hat{\omega}^N$:

$$p_{jt} = h_j^N(s_t, D_t, w_{jt}; \mathcal{H}_t) + \hat{\omega}_{jt}^N$$

- We compute test sample MSE for different specifications of flexible models:
 - vary neural network architectures, sample sizes, and inclusion of demand derivatives

Table 1: Test sample MSE across models (Bertrand DGP, Small Network)

No. Markets	Derivatives	ω	ω^B	ω^M	ω^P	ŵ	$\hat{\omega}^{N}$
T = 100	No	0.005	0.005	583.409	6.518	0.892	1.693
T = 100	Yes	-	-	-	-	0.556	1.319
T=1,000	No	0.001	0.001	979.962	5.977	1.390	1.800
T=1,000	Yes	-	-	-	-	0.348	0.978
T = 10,000	No	0.000	0.000	1693.914	6.317	1.221	1.743
T = 10,000	Yes	-	-	-	-	0.170	1.047

Table 2: Test sample MSE across models (Profit Weight, Large Network)

No. Markets	Derivatives	ω	ω^B	ω^M	ω^P	ŵ	$\hat{\omega}^{N}$
T = 100	No	0.005	8.765	5.077	11.474	1.359	1.847
T = 100	Yes	-	-	-	-	2.381	2.233
T=1,000	No	0.001	7.058	6.264	7.802	1.213	0.812
T=1,000	Yes	-	-	-	-	0.814	0.820
T = 10,000	No	0.000	7.965	6.289	8.690	0.324	0.887
T = 10,000	Yes	-	-	-	-	0.301	0.892

- In all simulations, VMM outperforms all but the true model
 - Including the derivative matrix greatly improves performance
- Larger neural networks improve learning in some cases
 - Performance is improved with sample size, especially for the profit weight model
- The naive estimator underperforms VMM

What about predictive performance in out-of-sample 3-to-2 merger simulation?

Figure 1: Prediction Error for Bertrand DGP Merger Simulation

Merger Simulation for Profit Weight DGP ($\kappa = 0.75$)

- Key question: How do we interpret the flexible \hat{h} we recover?
- A useful object for comparison is the pass-through matrix implied by \hat{h}
- To compute pass-through:
 - Pick median post-merger market by inside share from simulations
 - Increase costs c by 10%, loading increases on the residual $\hat{\omega}$
 - Solve for equilibrium prices under different models of conduct
 - Compare price pre and post cost change, report price change/cost change

Table 3: Bertrand DGP Pass-through Comparison $c_1 = 15.85, c_2 = 12.54, s_1 = 0.54, s_2 = 0.15$

(a)	True Mod	el (Bertrand)	(b) ∨	/MM
	0.49	0.05	0.49	0.10
	0.14	0.88	0.10	0.66

• The flexible model learns markup and cost functions that imply correct pass-throughs

Table 4: Profit Weight DGP Pass-through Comparison $c_1 = 13.75, c_2 = 12.96, s_1 = 0.61, s_2 = 0.04$

(a) True Mod	lel ($\kappa=$ 0.75)	(b) \	/MM
0.39	-0.44	0.40	-0.31
-0.00	0.97	-0.00	0.88

• The flexible model learns markup and cost functions that imply correct pass-throughs

Table 5: Inference Comparison by Sample Size (Small Network)

Model	Sample Size	ψ	$\hat{\psi}$	Avg. $\hat{\sigma}/\sqrt{N}$	Min. $\hat{\sigma}/\sqrt{N}$	Max. $\hat{\sigma}/\sqrt{N}$	Interval
Bertrand	N = 253	21.014	21.092	0.817	0.059	1.415	[18.673, 23.512]
Bertrand	N = 2,579	20.341	20.474	0.057	0.042	0.071	[20.305, 20.642]
Profit Weight	N = 253	17.321	12.907	0.309	0.174	0.648	[11.991, 13.822]
Profit Weight	N = 2,579	17.375	15.554	0.099	0.069	0.158	[15.261, 15.847]

• Intuitively: when predicting price at a particular market structure, uncertainty is (i) quantifiable, (ii) reasonable already at a low sample size of T = 100, and (iii) decreasing with sample size

- Good environment to test our method: airline markets in the US have rich data from DB1B
 - Fares, passenger counts, distances, carrier identifiers, etc.
 - Origin and destinations of trips
 - Several large mergers in sample
- Goal: predict unilateral price effects of American-US Airways merger
 - Zoom in on markets that move from $3\to 2$ firms post-merger
 - Treated markets are markets in which both merging firms are present
- (We abstract from many interesting aspects of the industry here...)

Airline Concentration

Figure 3: HHI in the Airline Industry

Observed Price Changes after AA-US Merger

Figure 4: Price Change Distribution

• Price changes after the AA-US merger in $3 \rightarrow 2$ markets

Demand

Table 6: Demand Estimates

	$\log(s_{jt}) - \log(s_{0t})$
Average Fare	-0.0048***
	(0.0004)
$\log(S_t)$	0.8356***
	(0.0133)
Share Nonstop	0.4030***
	(0.0282)
Average Distance (1,000's)	-0.4881***
	(0.0498)
Average Distance ² (1,000's)	0.0485***
	(0.0045)
$\log(1 + Num. Fringe)$	-0.2642***
	(0.0057)
R ²	0.94238
Observations	1,283,472
Own-price elasticity	-5.1652
Origin-destination fixed effects	\checkmark

• Elasticities broadly in line with literature (e.g., Berry and Jia, 2010)

Fit: Pooled In-Sample and Out-of-Sample Results

Figure 5: Model Comparison

• Reduction of \sim 40% in passenger-weighted MSE relative to Bertrand with constant costs $_{28}$

Figure 6: Predicted Price Change Distribution

• In theory, VMM can predict price decreases but it doesn't here

Merger Simulation: Comparing Predicted and Observed Post-merger Prices

Figure 7: Merger Simulation Comparison

Model	MSE
Bertrand	365.71
VMM	66.93

Merger Simulation: Inference

Thank You!

Inference: Simplest Case (d = 1)

- Note that $abla_{ heta'} h(heta_0)$ is d imes b; in the simplest case, suppose that d = 1
- Lemma 9 in Bennett and Kallus (2023) states that for any $\beta \in \mathbb{R}^{b}$, we have:

$$\beta^{T} \Omega_{0}^{-1} \beta = -\frac{1}{4} \inf_{\gamma \in \mathbb{R}^{b}} \sup_{f \in \mathcal{F}} \left\{ \mathbb{E}[f(Z)^{T} \nabla_{\theta} \omega(X; \theta_{0}) \gamma] - \frac{1}{4} \mathbb{E}[(f(Z)^{T} \omega(X; \theta_{0}))^{2}] - 4\gamma^{T} \beta - R_{N}(f) \right\}$$
(1)

• Take $\beta = \nabla_{\theta} h_x(\theta_0)$ and the above solution to the optimization problem becomes:

$$\sigma_x^2 = \nabla_\theta h_x(\theta_0) \Omega_0^{-1} \nabla_\theta h_x(\theta_0)^T$$

- This is the asymptotic variance for $\sqrt{N}(h_x(\hat{\theta}_N) h_x(\theta_0))$
 - $\nabla_{\theta} h_x(\theta_0)$ can be difficult to compute analytically
 - Numerical differentiation can be employed (e.g., Hong et al. (2015))
 - Expectations can be replaced by sample means, $\hat{\theta}_N$ can be used in place of θ_0
 - These together yield a feasible version of Equation (1) which provides an estimator $\hat{\sigma}_x^2$ for σ_x^2

Inference: Extending to $d \ge 2$

- The approach above cannot obtain a covariance matrix when $d\geq 2$
- Holm's Step-Down procedure using the estimates for $\hat{\sigma}_{x_i}^2$ and $h(\hat{\theta})$ for each j = 1, ..., d
- The set of critical values T_{α} is known for significance levels $\frac{\alpha}{d+1-k}$ and k=1,...,d
 - We can use a folded normal distribution with t = 1 to account for bias
- For any ordering of x and fixed ordering T_{α} , we can compute the confidence interval:

$$h_{x}(\hat{ heta}) \pm N^{-\frac{1}{2}} \hat{\sigma}_{x} T_{lpha}$$

- We compute this for all permutations of j = 1, ..., d, resulting in d! permutations of x
- This is because we must consider any possible ordering of the p-values of $x_1, ..., x_d$

1. Estimate $\hat{\sigma}_{x_j}^2$ for $\sigma_{x_j}^2$ for $j \in \{1, ..., d\} \equiv J$ by solving the feasible version of Equation (1)

- 2. Fix values $T_{\alpha} = \{T_{\alpha_k} : k = 1, ..., d\}$ where $\alpha_k = \frac{\alpha}{d+1-k}$
- 3. For each permutation \tilde{J} of J:
 - 3.1 Arrange values \tilde{x} and $\hat{\sigma}_{\tilde{x}}$ with permuted indices \tilde{J}
 - 3.2 Construct bounds as $h_{\tilde{x}}(\hat{\theta}) \pm n^{-\frac{1}{2}} \hat{\sigma}_{\tilde{x}} T_{\alpha}$ with fixed T_{α}
- 4. Simultaneous confidence interval as the union of $2 \times d \times d!$ linear constraints from Step (3)

Table 7: Test sample MSE across models (Bertrand DGP, Large Network)

No. Markets	Derivatives	ω	ω^B	ω^M	ω^P	ŵ	$\hat{\omega}^{N}$
T = 100	No	0.005	0.005	583.409	6.518	2.127	0.848
T = 100	Yes	-	-	-	-	1.234	1.259
T=1,000	No	0.001	0.001	979.962	5.977	0.645	0.802
T=1,000	Yes	-	-	-	-	0.690	0.791
T = 10,000	No	0.000	0.000	1693.914	6.317	0.352	0.875
T = 10,000	Yes	-	-	-	-	0.506	0.875

Table 8: Test sample MSE across models (Profit Weight DGP, Small Network)

No. Markets	Derivatives	ω	ω^B	ω^M	ω^P	ŵ	$\hat{\omega}^{N}$
T = 100	No	0.005	8.765	5.077	11.474	2.330	2.934
T = 100	Yes	-	-	-	-	2.749	2.512
T=1,000	No	0.001	7.058	6.264	7.802	2.385	2.314
T=1,000	Yes	-	-	-	-	1.176	1.747
T=10,000	No	0.000	7.965	6.289	8.690	1.855	2.563
T = 10,000	Yes	-	-	-	-	1.112	0.892