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Motivation

• Section 7 of the Clayton Act prohibits mergers if “[..] the effect of such acquisition[s] may

be substantially to lessen competition or to tend to create a monopoly.”

• From Horizontal Merger Guidelines:
• “[FTC & DOJ] seek to identify and challenge competitively harmful mergers while avoiding

unnecessary interference with mergers that are either competitively beneficial or neutral.”

• “Most merger analysis is necessarily predictive, requiring an assessment of what will likely

happen if a merger proceeds as compared to what will likely happen if it does not.”

• “What sufficient data are available, the Agencies may construct economic models designed to

quantify the unilateral price effects resulting from the merger.”

• How to provide useful predictions on the effects of mergers?
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The Merger Simulation Toolkit

• The standard merger simulation method is well-understood and powerful (e.g., Nevo, 2018)

• Focuses on unilateral price effects, and relies on the structure of demand and supply

• Estimate a matrix of own- and cross-price demand elasticities

• Typically implemented with two supply-side assumptions:

1. Nash-Bertrand pricing conduct

2. Constant marginal cost

• Can solve for counterfactual post-merger prices

• holding conduct, demand, and costs fixed or under assumptions, e.g., on efficiencies

• Evidence on the performance of merger simulation retrospectives is mixed (e.g.,
Bjöornerstedt and Verboven, 2016)

• A restrictive supply side is among one of the potential problems (Peters, 2006)
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What We Do

• Consider a more flexible, semi/nonparametric supply-side model

• Nonparametric markup function, depends on endogenous prices and quantities

• Estimate model with AI/ML

• Adapt Variational Method of Moments (VMM) (Bennett and Kallus, 2023)
• Uses deep learning + an objective function with instruments
• Better performance with high-dimensional data than standard nonparametric IV
• We develop an inference procedure to quantify uncertainty in prediction

• VMM outperforms standard merger simulation and naive neural network predictions

• Simulations showcase performance differences
• Application: mergers in airline markets
• Portable method, computationally manageable
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The Merger Simulation Toolkit

Suppose we only observe pre-merger data across products j and markets t:

• (st , pt) endog. outcomes, (xt ,wt) exog. demand and supply shifters, ownership matrix Ht

1. Estimate demand, obtain st = s(pt , θ̂
D , ·) and matrix Dt(pt , θ̂

D , ·) s.t. Djkt =
∂sjt(pt ,θ̂D)

∂pkt

2. Under Nash-Bertrand pricing back out ct = pt −
(
Ht � D

′
t

)−1
st

3. Predict post-merger prices as solution to:

p̃t = ct +
(
H̃t � Dt(p̃t , θ̂

D)
′
)−1

s(p̃t , θ̂
D)

where H̃t is post-merger ownership matrix
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A Flexible Model of Supply

• Merger simulation is complex prediction problem with simultaneity

• Prices are an equilibrium object and correlated with demand
• Naive prediction approaches will fail to recognize this

• The Nash-Bertrand assumption doesn’t always work well

• We develop a flexible supply model, relaxing Nash-Bertrand and constant cost assumption

• Throughout, we assume s(·) and Dt = ∂st
∂pt

are known/estimated to focus on supply-side
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Flexible Models of Supply

In general, can express

pt = ∆(st , pt , xt ;Ht) + c(st ,wt , ωt)

as long as the following holds

• Assumption 1: There exists a unique equilibrium, or the equilibrium selection rule is such

that the same pt arises whenever the vector (wt , xt , ωt) is the same.

We also maintain:

• Assumption 2: The cost function is separable in ωt , or c(st ,wt , ωt) = c̃(st ,wt) + ωt .

• Assumption 3: The markup function ∆ only depends on st and Dt .

so we can write

pt = h(st ,Dt ,wt ;Ht) + ωt
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Remarks

• More general than workhorse model!

• Assumption 1 amounts to static model describing the data
• Assumption 2 is almost without loss
• Assumption 3 satisfied for very broad range of conduct models (e.g., Bertrand, Cournot,

Stackelberg, many collusive models, models where firms max profits + consumer surplus)

• Notice that formulation of h does not enforce separability of cost and markup

• Extension: we can enforce separability with extra regularization steps (not today)

• For merger simulation H̃t (or other counterfactuals), finding prices that solve:

p̃t − ĥ(s(p̃t),D(p̃t),wt ; H̃t)− ω̂ = 0

where ĥ is the VMM model estimate, s(·) is demand, and ω̂t are estimated residuals

7



Identification

• We rely on a moment condition with instruments z for identification
• Instruments are of the right dimension, assume completeness
• Exogeneity moment condition E[ωjt | zjt ,wjt ] = 0

• Identification follows arguments akin to Berry and Haile (2014)

• Candidate instruments:
• own and rival prod. characteristics, rival’s cost shifters, taxes, etc.

• Must include demand shifters excluded from cost
• If not, w/ logit demand, may just recover inverse demand h = s−1

• But, standard nonparametric techniques are unlikely to perform well in finite samples
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Estimation

• Classic nonparametric estimators are well studied for GMM type setups

• see reviews by Carrasco et al. (2007); Chen (2007)

• But, curse of dimensionality and instability in classical nonparametric estimation

• documented in e.g., Bennett et al. (2019); Bennett and Kallus (2020)

• Can use neural networks to fit high-dimensional nonlinear functions with squared loss:

θ̂N = argminθ∈Θ
1

TJ

∑
j ,t

(pjt − hj(st ,Dt ,wt ; θ,Ht))2

• However, standard neural networks ignore endogeneity

• Cannot correctly recover the markup and cost function h(·)!
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Variational Method of Moments (VMM)

• Inherently, we have a moment condition for the structural markup:

E[pjt − hj(st ,Dt ,wt ; θ,Ht) | zt ,wt ] = 0

• Given preliminary estimate θ̃N , reformulate Bennett and Kallus (2023) to:

θ̂N = argminθ∈Θsupf ∈FN

1

TJ

∑
j ,t

f (zjt)
Tωjt(θ)− 1

4TJ

∑
j ,t

(f (zjt)
Tωjt(θ̃N))2 − RN(f )

s.t. ωjt(θ) = pjt − hj(st ,Dt ,wt ; θ,Ht)

• Both f and h are neural networks, allowing flexible controls of model complexity to cope

with the curse of dimensionality

• RN(·) is a penalty term that regularize the complexity of f

• We can use the estimate of the structural object h for merger simulation
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Inference

• If θ̃N
p→ θ0, under regularity conditions, Theorems 2-3 in Bennett and Kallus (2023) imply:

√
N(θ̂N − θ0)

d→ N(0,Ω−1
0 )

where

Ω0 =E
[
E[∇θω(θ0) | z ,w ]TE[ω(θ)ω(θ)T | z ,w ]−1E[∇θω(θ0) | z ,w ]

]
,

• For inference on d post-merger predicted prices h(θ̂N , H̃), delta method yields:

√
N(h(θ̂N , H̃)− h(θ0, H̃))

d→ N(0,∇θ′h(θ0, H̃)Ω−1
0 ∇θ′h(θ0, H̃)T )

Inference Details
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Simulations Setup

• Simple parametric simulations to evaluate performance relative to the baseline

• Two or three single-product firms in T markets

• Demand : Logit with two independent product characteristics

• Supply : Linear costs with two independent cost shifters

• We simulate data under two different assumptions on conduct

• Bertrand : Identity ownership matrix

• Profit Weight: Off-diagonal weights of 0.75
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Evaluating Predictive Performance

• We need a way to compare different (potentially misspecified) models

• We compare implied unobserved cost shocks ωm under different models m

• True, Bertrand, monopoly, perfect competition, and flexible models (VMM and naive NN)

• Cost shocks from the true model are irreducible error (noise)

• We take the mean squared error (MSE) between model implied and true shocks

• Benchmark: how far from the irreducible error is the prediction error
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Comparison of Models

• We recover ωB , ωM , and ωP under Bertrand, Monopoly, and perfect competition

• VMM Model: For flexible supply-side model, we estimate h and recover ω̂jt :

pjt = hj (st ,Dt ,wjt ;Ht) + ω̂jt

• VMM instruments: own x , sum of rival x

• Naive Model: Ignores endogeneity; we estimate a with NN a flexible hN and recover ω̂N :

pjt = hNj (st ,Dt ,wjt ;Ht) + ω̂N
jt

• We compute test sample MSE for different specifications of flexible models:

• vary neural network architectures, sample sizes, and inclusion of demand derivatives
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Bertrand DGP Results Large Network

Table 1: Test sample MSE across models (Bertrand DGP, Small Network)

No. Markets Derivatives ω ωB ωM ωP ω̂ ω̂N

T = 100 No 0.005 0.005 583.409 6.518 0.892 1.693

T = 100 Yes - - - - 0.556 1.319

T = 1, 000 No 0.001 0.001 979.962 5.977 1.390 1.800

T = 1, 000 Yes - - - - 0.348 0.978

T = 10, 000 No 0.000 0.000 1693.914 6.317 1.221 1.743

T = 10, 000 Yes - - - - 0.170 1.047
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Profit Weight DGP (κ = 0.75) Results Small Network

Table 2: Test sample MSE across models (Profit Weight, Large Network)

No. Markets Derivatives ω ωB ωM ωP ω̂ ω̂N

T = 100 No 0.005 8.765 5.077 11.474 1.359 1.847

T = 100 Yes - - - - 2.381 2.233

T = 1, 000 No 0.001 7.058 6.264 7.802 1.213 0.812

T = 1, 000 Yes - - - - 0.814 0.820

T = 10, 000 No 0.000 7.965 6.289 8.690 0.324 0.887

T = 10, 000 Yes - - - - 0.301 0.892
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Key Takeaways

• In all simulations, VMM outperforms all but the true model

• Including the derivative matrix greatly improves performance

• Larger neural networks improve learning in some cases

• Performance is improved with sample size, especially for the profit weight model

• The naive estimator underperforms VMM

What about predictive performance in out-of-sample 3-to-2 merger simulation?
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Merger Simulation for Bertrand DGP

Figure 1: Prediction Error for Bertrand DGP Merger Simulation
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Merger Simulation for Profit Weight DGP (κ = 0.75)

Figure 2: Prediction Error for Profit Weight Merger Simulation
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Peeking Inside the Black Box: Interpretation via Pass-through

• Key question: How do we interpret the flexible ĥ we recover?

• A useful object for comparison is the pass-through matrix implied by ĥ

• To compute pass-through:

• Pick median post-merger market by inside share from simulations
• Increase costs c by 10%, loading increases on the residual ω̂
• Solve for equilibrium prices under different models of conduct
• Compare price pre and post cost change, report price change/cost change
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Bertrand DGP Pass-through

Table 3: Bertrand DGP Pass-through Comparison

c1 = 15.85, c2 = 12.54, s1 = 0.54, s2 = 0.15

(a) True Model (Bertrand)

0.49 0.05

0.14 0.88

(b) VMM

0.49 0.10

0.10 0.66

• The flexible model learns markup and cost functions that imply correct pass-throughs
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Profit Weight DGP (κ = 0.75) Pass-through

Table 4: Profit Weight DGP Pass-through Comparison

c1 = 13.75, c2 = 12.96, s1 = 0.61, s2 = 0.04

(a) True Model (κ = 0.75)

0.39 -0.44

-0.00 0.97

(b) VMM

0.40 -0.31

-0.00 0.88

• The flexible model learns markup and cost functions that imply correct pass-throughs
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Inference

Table 5: Inference Comparison by Sample Size (Small Network)

Model Sample Size ψ ψ̂ Avg. σ̂/
√
N Min. σ̂/

√
N Max. σ̂/

√
N Interval

Bertrand N = 253 21.014 21.092 0.817 0.059 1.415 [18.673, 23.512]

Bertrand N = 2,579 20.341 20.474 0.057 0.042 0.071 [20.305, 20.642]

Profit Weight N = 253 17.321 12.907 0.309 0.174 0.648 [11.991, 13.822]

Profit Weight N = 2,579 17.375 15.554 0.099 0.069 0.158 [15.261, 15.847]

• Intuitively: when predicting price at a particular market structure, uncertainty is (i) quantifiable, (ii) reasonable

already at a low sample size of T = 100, and (iii) decreasing with sample size
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Application to Airline Mergers

• Good environment to test our method: airline markets in the US have rich data from DB1B

• Fares, passenger counts, distances, carrier identifiers, etc.
• Origin and destinations of trips
• Several large mergers in sample

• Goal: predict unilateral price effects of American-US Airways merger

• Zoom in on markets that move from 3→ 2 firms post-merger
• Treated markets are markets in which both merging firms are present

• (We abstract from many interesting aspects of the industry here...)
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Airline Concentration

Figure 3: HHI in the Airline Industry
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Observed Price Changes after AA-US Merger

Figure 4: Price Change Distribution
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Demand

Table 6: Demand Estimates

log(sjt ) - log(s0t )

Average Fare -0.0048∗∗∗

(0.0004)

log(St ) 0.8356∗∗∗

(0.0133)

Share Nonstop 0.4030∗∗∗

(0.0282)

Average Distance (1,000’s) -0.4881∗∗∗

(0.0498)

Average Distance2 (1,000’s) 0.0485∗∗∗

(0.0045)

log(1 + Num. Fringe) -0.2642∗∗∗

(0.0057)

R2 0.94238

Observations 1,283,472

Own-price elasticity -5.1652

Origin-destination fixed effects X

• Elasticities broadly in line with literature (e.g., Berry and Jia, 2010)
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Fit: Pooled In-Sample and Out-of-Sample Results

Figure 5: Model Comparison
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• Reduction of ∼ 40% in passenger-weighted MSE relative to Bertrand with constant costs
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Merger Simulation: Predicted Price Changes

Figure 6: Predicted Price Change Distribution
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• In theory, VMM can predict price decreases but it doesn’t here 29



Merger Simulation: Comparing Predicted and Observed Post-merger Prices

Figure 7: Merger Simulation Comparison
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Merger Simulation: Inference

Figure 8: Width of Confidence Intervals
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Thank You!
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Inference: Simplest Case (d = 1)

• Note that ∇θ′h(θ0) is d × b; in the simplest case, suppose that d = 1

• Lemma 9 in Bennett and Kallus (2023) states that for any β ∈ Rb, we have:

βTΩ−1
0 β =− 1

4
inf

γ∈Rb
sup
f∈F

{
E[f (Z )T∇θω(X ; θ0)γ]− 1

4
E[(f (Z )Tω(X ; θ0))2]− 4γTβ − RN(f )

}
(1)

• Take β = ∇θhx(θ0) and the above solution to the optimization problem becomes:

σ2
x = ∇θhx(θ0)Ω−1

0 ∇θhx(θ0)T

• This is the asymptotic variance for
√
N(hx(θ̂N)− hx(θ0))

• ∇θhx(θ0) can be difficult to compute analytically
• Numerical differentiation can be employed (e.g., Hong et al. (2015))
• Expectations can be replaced by sample means, θ̂N can be used in place of θ0

• These together yield a feasible version of Equation (1) which provides an estimator σ̂2
x for σ2

x

Back



Inference: Extending to d ≥ 2

• The approach above cannot obtain a covariance matrix when d ≥ 2

• Holm’s Step-Down procedure using the estimates for σ̂2
xj

and h(θ̂) for each j = 1, ..., d

• The set of critical values Tα is known for significance levels α
d+1−k and k = 1, ..., d

• We can use a folded normal distribution with t = 1 to account for bias

• For any ordering of x and fixed ordering Tα, we can compute the confidence interval:

hx(θ̂)± N−
1
2 σ̂xTα

• We compute this for all permutations of j = 1, ..., d , resulting in d! permutations of x

• This is because we must consider any possible ordering of the p-values of x1, ..., xd

Back



Inference Algorithm

1. Estimate σ̂2
xj

for σ2
xj

for j ∈ {1, ..., d} ≡ J by solving the feasible version of Equation (1)

2. Fix values Tα = {Tαk
: k = 1, ..., d} where αk = α

d+1−k

3. For each permutation J̃ of J:

3.1 Arrange values x̃ and σ̂x̃ with permuted indices J̃

3.2 Construct bounds as hx̃(θ̂)± n−
1
2 σ̂x̃Tα with fixed Tα

4. Simultaneous confidence interval as the union of 2× d × d! linear constraints from Step (3)

Back



Bertrand DGP Results Back

Table 7: Test sample MSE across models (Bertrand DGP, Large Network)

No. Markets Derivatives ω ωB ωM ωP ω̂ ω̂N

T = 100 No 0.005 0.005 583.409 6.518 2.127 0.848

T = 100 Yes - - - - 1.234 1.259

T = 1, 000 No 0.001 0.001 979.962 5.977 0.645 0.802

T = 1, 000 Yes - - - - 0.690 0.791

T = 10, 000 No 0.000 0.000 1693.914 6.317 0.352 0.875

T = 10, 000 Yes - - - - 0.506 0.875



Profit Weight DGP (κ = 0.75) Results Back

Table 8: Test sample MSE across models (Profit Weight DGP, Small Network)

No. Markets Derivatives ω ωB ωM ωP ω̂ ω̂N

T = 100 No 0.005 8.765 5.077 11.474 2.330 2.934

T = 100 Yes - - - - 2.749 2.512

T = 1, 000 No 0.001 7.058 6.264 7.802 2.385 2.314

T = 1, 000 Yes - - - - 1.176 1.747

T = 10, 000 No 0.000 7.965 6.289 8.690 1.855 2.563

T = 10, 000 Yes - - - - 1.112 0.892
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