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Introduction

• Motivation: Models of industry dynamics have a curse of dimensionality
• Problems become intractable with many firms and high-dimensional heterogeneity
• Solution concepts mainly allow for low-dimensional heterogeneity

• Question: How can we incorporate high-dimensional heterogeneity in dynamic problems?
• Is an approximation of the state space a viable method? When does it perform well?
• Hybridize Markov perfect equilibrium and oblivious equilibrium to incorporate many states?

• Project: Formalize nested equilibrium concepts and run simulations
• Intuition: Clustering algorithms or a priori specification identify similar firms
• Current: Original solution concepts are special cases and static simulations

• Experiments: separation of nests, nesting parameter, and overlap in nests

• Next Steps: Wrap up the dynamic simulations, application
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Simulated Example
Figure: Simulated Data
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Related Literature

• Many studies follow the original model in Ericson and Pakes (1995) and algorithm in
Pakes and McGuire (1994)

• New solution concepts and approximations address the curse of dimensionality
• Asymptotic games: Weintraub et al. (2008) and Benkard et al. (2015) assume firms respond

as if the industry is in the steady state
• Continuous time: Doraszelski and Judd (2012) cast the game in continuous time
• Approximations: Doraszelski (2012) and Barwick and Pathak (2015) approximate the value

function with flexible functions

• Recent papers use machine learning to reduce dimensionality and identify clusters
• Magnolfi et al. (2022) use distances between products in latent space in static demand
• Raisingh (2022) and Barwick et al. (2021) use an index to summarize a state
• Atalay et al. (2023) identify nests of products with clustering techniques
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Model Assumptions

• Firms j ∈ {1, ..., J}
• Infinite horizon discrete time t ∈ {1, 2, 3, ...} with discount factor β ∈ (0, 1)

• State xjt tracks the quality x of firm j in period t resulting in per-period profits Π(xjt , s−jt)

• st is the state vector of all firms in period t, i.e., a histogram2

• For example, when x ∈ {0, 1}, two firms are at x = 0, and three firms are at x = 1, then the
industry state is st = (st(0), st(1)) = (2, 3)

• This implies the total number of firms is Nt =
∑

x st(x)

• Curse of dimensionality: with 20 firms and 40 states, there are
(N+K

K

)
≈ 2e15 states

2In the extension, firms must also track an index for their respective nests in s−jt .
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State Space and Payoffs

• The state space is the set of all industry states

S =

{
s ∈ N∞∣∣∑

x

s(x) < ∞

}
• Notably, the state of the competitors of firm j is given by:

s−jt(x) =

{
st(x)− 1 if x = xjt

st(x) otherwise

• Profits are characterized by static Nash equilibrium, e.g., with logit demand:

Π(xjt , s−jt) = mσ(xjt , s−jt , pt)(pjt − c)
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Investment, Entry, and Exit

• Firms invest ι to improve future quality which is successful with some probability, e.g.:

P(xj ,t+1|xjt = x , ι) =


(1−δ)aι
1+aι if xj ,t+1 = x + 1

(1−δ)+δaι
1+aι if xj ,t+1 = x
δ

1+aι if xj ,t+1 = x − 1

• Quality can stochastically depreciate by one with probability δ

• Incumbent firms privately observe random sell-off values ϕjt
3

• Potential entrants have random entry costs κjt and appear in state xe

• The number of entrants is i.i.d. and Poisson with mean λ(st)

3This a key difference from Hopenhayn to smooth exit decisions.
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Markov Perfect Equilibrium Timing

• Incumbents have investment strategies ι and exit strategies ρ such that µ ≡ (ι, ρ)

• Potential entrants have cut-off entry strategies λ

• The value function for some random exit time τj is given by:

V (x , s|µ′, µ, λ) = Eµ′,µ,λ

[ τj∑
k=t

βk−t(Π(xjk , sk)− c(ιjk , xjk)) + βτj−tϕj ,τj

∣∣∣xjt = x , st = s

]
• Equilibrium is composed of strategies µ and λ that satisfy the following conditions:

1 Incumbent strategies are optimal:

sup
µ′∈M

V (x , s|µ′, µ, λ) = V (x , s|µ, λ), ∀(x , s) ∈ X × S

2 The cut-off rule for entry is determined by the expected discounted value of profits in the
entry state for any industry state:

λ(s) = βEµ,λ [V (xe , st+1|µ, λ)|st = s] , ∀s ∈ S
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Oblivious Equilibrium

• The curse of dimensionality makes computation intractable
• Key idea: Assume the industry is in the steady-state already

• If there are enough firms, the industry should be close to constant
• Reasoning along the lines of the law of large numbers

• No longer track every possible industry state st because it is assumed to be constant
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Oblivious Value Function

• Denote the long-run expectation of the industry state s̃ = E[s]
• Firms assume that the current state is the long-run average

lim
t→∞

s̃t(x) = λ

∞∑
k=0

Pk
µ(x

e , x) ∀x

• This implies that s̃µ,λ = λ(I − Pµ)
−1 for entrants

• Oblivious strategies and value function:

Ṽ (x |µ′, µ, λ) = Eµ′

[
τi∑

k=t

βk−t(Π(xik , s̃µ,λ)− c(ιik , xik)) + βτi−tϕi ,τi

∣∣∣xit = x

]
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Oblivious Equilibrium

1 Incumbent strategies optimize their oblivious value functions:

sup
µ′∈M̃

Ṽ (x |µ′, µ, λ) = Ṽ (x |µ, λ), ∀x ∈ X

2 Either the expected (oblivious) expected value of entry is zero, the entry rate is zero, or
both:

λ
[
βṼ (xe |µ′, µ, λ)− κ

]
= 0,

βṼ (xe |µ′, µ, λ)− κ ≤ 0,

λ ≥ 0.

Dimensionality reduction: kJ → k states
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Comparison to Markov Perfect Equilibrium

Figure: Method Comparison
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Distribution of States
Figure: Distribution of States
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Partially Oblivious Equilibrium Value Function

1 Incumbent strategies optimize their partially oblivious value functions:

sup
µ′∈M̃p

Ṽp(x̄ ,w |µ′, µ, λ) = Ṽp(x̄ ,w |µ, λ), ∀x̄ ,w

2 Either the expected (oblivious) expected value of entry is zero, the entry rate is zero, or
both: ∑

w

λ(w)
[
βE[Ṽp((x

e , 0),wt+1|µ′, µ, λ)|wt = w ]− κ
]
= 0,

βE[Ṽp((x
e , 0),wt+1|µ′, µ, λ)|wt = w ]− κ ≤ 0 ∀w ,

λ(w) ≥ 0 ∀w .

Dimensionality reduction: kJ → kD+1 states

Jack Collison, UW-Madison Computational Lecture October 28, 2024 13 / 34



Moment-Based Markov Equilibrium Value Function

1 Incumbent strategies optimize their perceived value functions:

sup
µ′∈M̃m

Ṽm(x , ŝ|µ′, µ, λ) = Ṽm(x , ŝ|µ, λ), ∀x , ŝ

2 The expected perceived discounted value of entry is equal to the cut-off value for entry:

λ(ŝ) = βEµ,λ

[
Ṽm(x

e , ŝt+1|µ, λ)|ŝt = ŝ
]
, ∀ŝ ∈ Ŝ

Dimensionality reduction: kJ → kD states
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High-Dimensional Heterogeneity

• The state space can expand to include heterogeneity

• However, it is subject to a curse of dimensionality in heterogeneity

• The problem becomes more intractable when there are many continuous dimensions
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Simulated Example
Figure: Simulated Data
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Nested Markov Equilibria

• Nested Markov equilibria are the proposed solution concepts
• Extensions to oblivious, partially oblivious, and moment-based Markov equilibria

• Firms that are close to each other in characteristics space compete more strongly
• Rely on a few key assumptions

• Nests are recoverable with some function
• Firms use nests to approximate the state space in their optimization problems
• Firms can only belong to one nest, i.e., no overlap
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Assumptions

Assumption (Recoverable Nests)

The data-generating process for the high-dimensional heterogeneity of firms is based on
underlying low-dimensional nests and is unaffected by investment decisions. Further, there
exists a function G that recovers the nests from the high-dimensional object X. That is, the
nest is determined by g = G (X).
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Assumptions

Assumption (Firm State Approximations)

Firms use their respective nests in their optimization problems as a sufficient statistic rather
than the full and potentially high-dimensional or continuous state space. Namely, the
conditions required for Markov perfect equilibrium are satisfied using a simplified state space
that only includes nests G rather than a high-dimensional object X:

V (x , s(X)|µ, λ) = V (x , s(G)|µ, λ)

λ(s(X)) = λ(s(G))

That is, firms optimize over s(G) rather than s(X).
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Assumptions

Assumption (No Overlap)

Firms respond symmetrically within their respective nests. This obviates the need to track firm
identities and thus restricts the model to an anonymous equilibrium. In other words, nests do
not overlap.
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Proposed Strategies

• Nested oblivious equilibrium
1 Nests are independent and internally oblivious
2 Nests are oblivious to themselves and other nests
3 Nests are independent and not oblivious to themselves
4 Nests are oblivious to other nests but not to themselves

• Nested partially oblivious equilibrium

• Nested moment-based Markov equilibrium
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Simulated Example
Figure: Simulated Data
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Nested Oblivious Equilibrium Algorithm

Proposition (1)

Cases (i), (ii), and (iv) nest oblivious equilibrium as a special case. Proof

Proposition (2)

Cases (iii) and (iv) nest Markov perfect equilibrium as a special case. Proof
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Proposed Strategies

• Nested oblivious equilibrium
• Nested partially oblivious equilibrium

1 Nests are independent and partially oblivious to themselves
2 Nests are partially oblivious to themselves and oblivious to other nests

• Nested moment-based Markov equilibrium

Jack Collison, UW-Madison Computational Lecture October 28, 2024 23 / 34



Simulated Example
Figure: Simulated Data

0.4

0.8

1.2

1.6

0.4 0.8 1.2 1.6
Dimension 1

D
im

en
si

on
 2

Nest 1 2 3

Jack Collison, UW-Madison Computational Lecture October 28, 2024 23 / 34



Nested Partially Oblivious Equilibrium Algorithm

Proposition (3)

Nested oblivious equilibrium, oblivious equilibrium, partially oblivious equilibrium, and full
Markov perfect equilibrium are special cases of nested partially oblivious equilibrium. Proof
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Proposed Strategies

• Nested oblivious equilibrium

• Nested partially oblivious equilibrium
• Nested moment-based Markov equilibrium

1 Nests are independent and firms use moment-based strategies to respond to competitors
2 Nests use moment-based strategies to respond to competitors within and outside their nests
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Simulated Example
Figure: Simulated Data
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Nested Moment-Based Markov Equilibrium Algorithm

Proposition (4)

Nested partially oblivious equilibrium and moment-based Markov equilibrium are special cases
of nested moment-based Markov equilibrium. Subsequently, partially oblivious equilibrium,
nested oblivious equilibrium, oblivious equilibrium, and Markov perfect equilibrium are special
cases as well. Proof
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Static Simulations

• Static simulations show the error introduced by the firm state approximation assumption

• Nested logit is the environment of interest

uijt = αpjt + βXjt + εig(j)t + (1− ρ)εijt

• High-dimensional heterogeneity comes in through X

• Question: When does the state approximation assumption hold?
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Static Simulations Simulated Data

Table: Static Model Parameterization

Parameter Symbol Value

Number of firms N 99
Nesting identifier g g ∈ G = {1, 2, 3}
Separation of nests s s ∈ S = {0, 1}
Variance of covariates σ σ ∈ Σ = {0.01, 0.1, 0.5, 1.0}
Covariate (1) X1 s × g

2 + N(0, σ)
Covariate (2) X2 s × g

2 + N(0, σ)
Price sensitivity α -0.5
Taste for X1 β1 1
Taste for X2 β2 0.25
Nesting parameter ρ ρ ∈ P = {0.1, 0.5, 0.7, 0.99}
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Independent Nest Pricing Simulated Data

Figure: Independent Nests

Jack Collison, UW-Madison Computational Lecture October 28, 2024 29 / 34



Independent Nest Pricing Simulated Data

Figure: Independent Nests
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Averaged Nest Pricing Simulated Data

Figure: Averaged Nests
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Averaged Nest Pricing Simulated Data

Figure: Averaged Nests
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Takeaways

• Approximations of the state space work well in a static setting
• They work especially well when at least one of a few conditions is met:

• Nests are tightly defined (σ → 0)
• Nests are separated from one another (s ̸= 0)
• Within-nest substitution is strong (ρ → 1)

• Averaged nest pricing dominates independent nest pricing
• Differences are negligible when within-nest substitution is strong enough
• Differences are also small when nests are not well separated
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Dynamic Simulations [in progress]

• Follow the example of Ifrach and Weintraub (2017) with advertising4

uijt = θ1 log(xjt + 1) + θ2 log(Y − pjt) + G (Xj) + νig(j)t + (1− ρ)νijt

• Consumers have preferences over quality x and price p

• They also collapse high-dimensional characteristics into a nest fixed effect G (X)

• Transition probabilities are as denoted earlier

4Assume that advertising is not informative...
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Dynamic Simulations [in progress]

Parameter Symbol Value

Discount factor β 0.95
Market size m 50
Demand quality weight θ1 0.5
Demand composite good weight θ2 0.5
Demand nest fixed effects G (X) {0.01, 0.02}
Demand nesting parameter ρ 0.9
Average income Y 1
Investment efficacy a 3
Depreciation probability δ 0.7
Entry state xe 10
Marginal investment cost d 0.5
Marginal cost c 0.5
Sunk entry cost κ 35
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Conclusions

• The curse of dimensionality remains a large problem in dynamic problems

• Methods such as oblivious, partially oblivious, and moment-based equilibria help

• However, it is difficult to incorporate high-dimensional heterogeneity

• Progress thus far:
• Proposed approaches nest original solution concepts
• Static simulations show when the assumptions required are reasonable

• Next: Comparison of Markov perfect equilibrium, original methods, and new methods
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Assumptions Back

1 For all x , Π(x , s) is increasing in x and supx ,s Π(x , s) < ∞
2 Scrap values ϕjt are i.i.d. and E[ϕjt ] < ∞
3 Transition probability P(xj ,t+1|xjt = x , ι) is i.i.d. across firms and independent of ϕjt

4 Entrants’ mass Mt is a Poisson random variable and is conditionally independent of
(ϕjt , xjt) (conditional on st)

5 κ > βϕ̄ where ϕ̄ is the expected net present value of entering the market, earning zero
profits each period, and then exiting at an optimal stopping rule
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Model Timing Back

Figure: Model Timing
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Partially Oblivious Value Function Back

• Denote D̄ as the set of indices associated with dominant firms

• Extend the state space to x̄it =
(
xit ,1{i ∈ D̄}

)
• Partially oblivious strategies and value function:

Ṽp(x̄ ,w |µ′, µ, λ) = Eµ′,µ,λ

[
τi∑

k=t

βk−t(Πik − c(ιik , xik)) + βτi−tϕi ,τi

∣∣∣x̄it = x̄ ,wt = w

]
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Perceived Value Function Back

• Firms use a function θ that maps fringe firms’ states into moments

• Firms use a perceived transition kernel to describe the evolution of the industry

• A joint transition kernel also incorporates transitions from fringe to dominance

• Firms maximize a perceived value function over the perceived joint transition kernel:

Ṽm(x , ŝ|µ′, µ, λ) = Eµ′,µ,λ

[
τi∑

k=t

βk−t(Π(xik , ŝk)− c(ιik , xik)) + βτi−tϕi ,τi

∣∣∣x̄it = x̄ , ŝt = ŝ

]
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Nested Oblivious Equilibrium Back

Proposition (1).

Consider the case when K = 1. Cases (i) and (ii) each constitute an oblivious equilibrium.
Now consider the case when K = N. In Case (iv), firms are not oblivious to themselves but are
oblivious to all other firms. Thus, each of these cases comprises an oblivious equilibrium.

Proposition (2).

Consider the case when K = 1. Cases (iii) and (iv) converge to Markov perfect equilibrium
because all firms are in the same nest and are not oblivious to each other.
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Nested Oblivious Equilibrium Back

Algorithm Nested Oblivious Equilibrium

1: Compute a set of nests G via clustering or a priori specification
2: Augment the state space x according to Cases (i)-(iv)
3: Initialize n = 1, ∆ = ε+ 1, µg , λg for all g ∈ G
4: for g ∈ G do
5: Initialize n = 1, ∆ = ε+ 1
6: while ∆ > ε do
7: Solve Ṽ (·) for each state x and nest g
8: Update λg := λg + ((λg )′ − λg )/(1 + nσ) for all g ∈ G
9: Update µg := µg + ((µg )′ − µg )/(1 + nσ) for all g ∈ G

10: n = n + 1
11: end while
12: end for
13: return {(λg , µg )} for all g ∈ G
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Nested Partially Oblivious Equilibrium Back

Proposition (3).

Suppose there are no dominant firms. This is exactly nested oblivious equilibrium. Now
suppose that all firms are dominant. Case (i) is thus equivalent to Case (iii) of nested oblivious
equilibrium and Case (ii) is the same as Case (iv) of nested oblivious equilibrium because firms
respond to the states of all firms within their nest and are oblivious to firms outside their nest.
Propositions 1 and 2 show that oblivious equilibrium and Markov perfect equilibrium are
subsequently nested.

Suppose that there is at least one dominant firm and K = 1. This is exactly the solution
concept of partially oblivious equilibrium.
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Nested Partially Oblivious Equilibrium Back

Algorithm Nested Partially Oblivious Equilibrium

1: Compute a set of nests G via clustering or a priori specification
2: Augment the state space x according to Cases (i) and (ii)
3: Initialize n = 1, ∆ = ε+ 1, µg (x̄ ,w), λg (w) for all g ∈ G, x̄ , and w
4: for g ∈ G do
5: Initialize n = 1, ∆1 = ε1 + 1, ∆2 = ε2 + 1
6: while ∆1 > ε1, ∆2 > ε2 do
7: Compute f̃ g (w |µ, λ) for all w
8: Solve Ṽp(·) for each state x̄ , w in nest g with (µg )′

9: λg (w)′ = λg (w)
(
βE

[
Ṽp((x

e , 0),wt+1|(µg )′, µg , λg )|wt = w
]
/κ

)
∀w

10: Update errors and policy functions
11: end while
12: end for
13: return {(λg , µg )} for all g ∈ G
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Nested Moment-Based Markov Equilibrium Back

Proposition (4).

Suppose that the moment function is the identity θ(f ) = f . Firms respond obliviously to the
relevant histograms of fringe firms and dominant firms. This corresponds to (simulated) nested
partially oblivious equilibrium. Proposition 2 shows that all solution concepts are nested.

Now suppose that K = 1. All firms are contained in the same nest, meaning they each
respond to their own state and the states of the dominant firms, and use moment-based
strategies to respond to the fringe. This constitutes a moment-based Markov equilibrium.
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Nested Moment-Based Markov Equilibrium Back

Algorithm Nested Moment-Based Markov Equilibrium

1: Compute a set of nests G via clustering or a priori specification
2: Set initial industry state s0 = {(f g0 , dg

0 )}g∈G , initialize n = 1, ∆ = ε+ 1
3: for g ∈ G do
4: Initialize n = 1, ∆ = ε+ 1
5: while ∆ > ε do
6: Simulate sgt = (f gt , dg

t , zt) with ŝgt for t ∈ {1, ...,T} and g ∈ G
7: Compute frequency of states and perceived transition kernel
8: Solve Ṽm(·) for each state x , ŝ, g ∈ G with (µg )′

9: λg (ŝg )′ = βEµg ,λg

[
Ṽm(x

e , ŝgt+1|(µg )′, µg , λg )|ŝgt = ŝg
]
∀ŝg , g ∈ G

10: Update errors and policy functions
11: end while
12: end for
13: return {(λg , µg )} for all g ∈ G
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Static Data-Generating Process Back

Figure: Data-Generating Process with s = 1, σ = 0.1
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Static Data-Generating Process
Figure: Data-Generating Process with s = 0, σ = 0.1
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